${ m A6}$: Applications of Integration

- **1.** Find the volume of the described solid S.
- (a) The area A(x) of the cross-section of S perpendicular to the x-axis and passing through the point x, for each x between 0 and 1, is $A(x) = \sin(\pi x)$.
- (b) The base of S is the region between the curve $y = \frac{1}{x}$ and the x-axis bounded on the sides by x = 1 and x = 2. The cross-sections perpendicular to the x-axis are figures with the area $A = \frac{b^3}{12}$ where b is the length of the intersection of the cross-section with the base.
- (c) The base of S is the region bounded by the lines y = x, y = 3x, x = 1, and x = 2. The cross-sections perpendicular to the x-axis are semidisks with the diameter in the base.
- (d) The base of S is the region bounded by the curves $y = \sqrt{x}$, $y = \sqrt[3]{x}$, and the lines y = 1 and y = 2. The cross-sections perpendicular to the y-axis are squares.

A7: Techniques of Integration

1. The base of a solid is the region bounded by the curve $y = \sin x$ and the lines y = x and $x = \pi/2$. Cross-sections perpendicular to the x-axis are isosceles right triangles with hypotenuse in the base.

Sketch the base and find the volume of the described solid.

- **2.** The region in the xy-plane is bounded by the curves $y = 2\cos x$, $y = \tan x$ and the lines x = 0, $x = \pi/4$.
- (a) Sketch the region.
- (b) Find the volume of the solid with this region as its base if its cross-sections perpendicular to the x-axis are squares.
- (c) Find the volume of the solid obtained by rotating the region about the x-axis.
- **3.** The region in the xy-plane is bounded by the curves $y = \arcsin x$, $y = \operatorname{arcsec} x$ and the lines y = 0, $y = \pi/4$.
- (a) Find the volume of the solid with this region as its base if its cross-sections perpendicular to the y-axis are squares.
- (b) Find the volume of the solid obtained by rotating the region about the y-axis.

${ m A11}$: Infinite Sequences and Series

1. Determine whether the sequence $\{a_n\}$ converges or diverges. If it converges, find the limit.

(a)
$$a_n = \sqrt[n]{2n+1}$$
 (Hint: you may use the fact that $\lim_{n\to\infty} \sqrt[n]{n} = 1$.)

(b)
$$a_n = \sqrt[n]{3n^5 + n^2 + 1}$$

(c)
$$a_n = \sqrt{3n^5 + n^2 + 1}$$

2. Determine whether the series is convergent or divergent. If it is convergent, find its sum.

(a)
$$\sum_{n=1}^{\infty} \frac{(-1)^n 3e^{n+2}}{4^n}$$
 (b) $\sum_{n=0}^{\infty} \frac{(-1)^n 4^n}{5e^{n+2}}$ (c) $\sum_{n=0}^{\infty} \frac{(-1)^n 4^n}{5e^{2n+2}}$

(b)
$$\sum_{n=0}^{\infty} \frac{(-1)^n 4^n}{5e^{n+2}}$$

(c)
$$\sum_{n=0}^{\infty} \frac{(-1)^n 4^n}{5e^{2n+2}}$$

3. Find the *n*th partial sum of the telescoping series. Then determine whether the series is convergent or divergent. If it is convergent, find its sum.

(a)
$$\sum_{n=1}^{\infty} (\cos n - \cos(n-1))$$

is convergent, find its sum.

(a)
$$\sum_{n=1}^{\infty} (\cos n - \cos(n-1))$$
 (b) $\sum_{n=1}^{\infty} \left[\left(1 + \frac{1}{n}\right)^n - \left(1 + \frac{1}{n+1}\right)^{n+1} \right]$

- **4.** The *n*th partial sum s_n of a series $\sum_{n=1}^{\infty} a_n$ is $s_n = \ln(n+1) \ln(2n+1)$. Find the term a_n (present it as a single logarithm) and determine whether the series is convergent or divergent. If it
- **5.** Determine whether the series converges or diverges.

(a)
$$\sum_{n=1}^{\infty} \frac{3 + \sin n}{\sqrt{n}}$$

(a)
$$\sum_{n=1}^{\infty} \frac{3 + \sin n}{\sqrt{n}}$$
 (b) $\sum_{n=1}^{\infty} \frac{3 + \sin n}{n\sqrt{n}}$ (c) $\sum_{n=1}^{\infty} \frac{\left(1 + \frac{3}{n}\right)^n}{e^n + n}$ (d) $\sum_{n=1}^{\infty} \frac{4^n}{3^n + 5^n}$

(c)
$$\sum_{n=1}^{\infty} \frac{\left(1 + \frac{3}{n}\right)^n}{e^n + n}$$

(d)
$$\sum_{n=1}^{\infty} \frac{4^n}{3^n + 5^n}$$

(e)
$$\sum_{n=1}^{\infty} \left(1 - \frac{1}{n}\right)^{n^2}$$
 (f) $\sum_{n=1}^{\infty} \frac{(2n)!}{n^{2n}}$

(f)
$$\sum_{n=1}^{\infty} \frac{(2n)!}{n^{2n}}$$