Answer-Keys to Even Review Problems for Test 2
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Section 11.1

26. Converges to 2 28. Converges to 3 30. Converges to 0
36. Diverges, limit dne 38. Converges to 1 40. Converges to 0
50. Converges to 0 56. Converges to 0

Section 11.2

4.  Series converges and Sum= lim s, = - 22. Series converges and Sum=
n—00 4 T—1
24.  Series diverges 26. Divergent 34. Series diverges

46. S, =
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and Sum= lim S, = 3 Series converges.
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Section 11.3

4. Divergent P-series.

Section 11.4

2. (a) Z ay, diverges (b) Z a, could be convergent or divergent
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10. Series converges by the Comparison Test when by = =

A11: Sequences and Series

(a) Series diverges by comparison with b, = (b) Series converges by comparison wirh b, =
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(d) Series converges by comparison with b, = o (5)

Section 11.5

6. Converges by the Alternative Series Test 10. Converges by the Alternative Series Test
14. Divergent by the Test for Divergence

Section 11.6
3

1
4. Z an, converges absolutely as Z |ar| coverges by the comparison Test as b,, = et

- . . . 1
6. Z an, converges conditionally as Z |ay| diverges by the Comparison Test with b,, = - and Z an,
converges by the AST
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6. Converges to 0 8. Converges to 0 14. Converges by Alt. Series Test
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