Section 3.4

14.
$$\pi t \cos(\pi t) + \sin(\pi t)$$
 22. $5\left(x + \frac{1}{x}\right)^4 \left(1 - \frac{1}{x^2}\right)$
62. $h'(x) = \frac{3f'(x)}{2\sqrt{4+3f(x)}}$ and $h'(1) = \frac{6}{5}$.

Section 3.5

12.
$$y' = -\frac{y \sin(xy)}{x \sin(xy) + \cos y}$$
 10. $y' = \frac{1 - e^y}{x e^y + 1}$
26. $y' = \frac{2 - \cos(x + y)}{\cos(x + y) + 2}$ and the tangent line is $y = \frac{1}{3}x + \frac{1}{3}x +$

52.
$$-\frac{1}{2\sqrt{x}\sqrt{1-x}}$$
 56. $-\frac{1}{|t|\sqrt{t^2-1}}$

Section 3.6

4. $2 \cot x$

42.
$$y' = \sqrt{x} e^{x^2 - x} (1 + x)^{2/3} \left(\frac{1}{2x} + 2x - 1 + \frac{2}{3x + 3} \right)$$

Section 3.7

2. (a)
$$\mathbf{v}(t) = -\frac{9(t^2 - 9)}{(t^2 + 9)^2}$$
, (b) $\mathbf{v}(1) = \frac{18}{25}$ ft/s, (c) $t = 3$ s, (d) $0 < t < 3$,
(e) total distance is $\frac{9}{5}$ ft, (g) $\mathbf{a}(t) = \frac{18t(t^2 - 27)}{(t^2 + 9)^3}$, $\mathbf{a}(1) = -\frac{117}{250}$ ft/s²,

(i) At both t = 1/3 and t = 4/3 particle is moving forward and slowing down.

3. (i) At t = 1/3 particle is moving forward and slowing down and at t = 4/3 it is moving backward and speeding up.

 $\frac{2\pi}{3}$

4. (a)
$$\mathbf{v}(t) = t(2-t)e^{-t}$$
, (b) $\mathbf{v}(1) = \frac{1}{e} \text{ft/s}$, (c) At $t = 0 \text{ s or } t = 2 \text{ s}$, (d) $0 < t < 2$,
(e) total distance is $\left(\frac{8}{e^2} - \frac{36}{e^6}\right) ft$, (g) $\mathbf{a}(t) = (t^2 - 4t + 2)e^{-t}$, $\mathbf{a}(1) = -\frac{1}{e} \text{ft/s}^2$,

(i) At t = 1/3 particle is moving forward and speeding up and at t = 4/3 particle is moving forward but slowing down.

Section 3.9

4. $140cm^2/s$ **6.** $25,600\pi mm^3/s$ **14.** (a) $-1cm^2/s$ (b) If x is the diameter we will find dx/dt when x = 10 (c) $2\pi x \frac{dx}{dt}$ (d) $\frac{dx}{dt} = -\frac{1}{20\pi} cm/min$

Chapter 3 Review:

4.
$$y' = \frac{(1 + \cos x) \sec^2 x + \tan x \sin x}{(1 + \cos x)^2}$$

72. $y' = 2x g'(x^2)$
78. $y' = \frac{g'(\ln x)}{x}$

Section 4.1

60. Absolute maxima is $f(1) = \sqrt{e}$ and absolute minima is f(-2) = -2/e

Section 4.2

8. f(x) = x + 1/x, $\left[\frac{1}{2}, 2\right]$. $f'(x) = 1 - 1/x^2 = \frac{x^2 - 1}{x^2}$. f is a rational function that is continuous on its domain, $(-\infty, 0) \cup (0, \infty)$, so it is continuous on $\left[\frac{1}{2}, 2\right]$. f' has the same domain and is differentiable on $\left(\frac{1}{2}, 2\right)$. Also, $f\left(\frac{1}{2}\right) = \frac{5}{2} = f(2)$. $f'(c) = 0 \iff \frac{c^2 - 1}{c^2} = 0 \iff c^2 - 1 = 0 \iff c = \pm 1$. Only 1 is in $\left(\frac{1}{2}, 2\right)$, so 1 satisfies the conclusion of Rolle's Theorem.

14. $f(x) = \frac{1}{x}$, [1,3]. f is continuous and differentiable on $(-\infty, 0) \cup (0, \infty)$, so f is continuous on [1,3] and differentiable on (1,3). $f'(c) = \frac{f(b) - f(a)}{b - a} \iff -\frac{1}{c^2} = \frac{f(3) - f(1)}{3 - 1} = \frac{\frac{1}{3} - 1}{2} = -\frac{1}{3} \iff c^2 = 3 \iff c = \pm\sqrt{3}$, but only $\sqrt{3}$ is in (1,3).

Section 4.3

- **18.** (a) f is increasing on (0, 4) and decreasing on $(-\infty, 0) \cup (4, \infty)$.
 - (b) Local minimum value is f(0) = 0 and local maximum value is $f(4) = \frac{256}{e^4}$.
 - (c) f is concaved up on $(-\infty, 2) \cup (6, \infty)$ and concaved down on (2, 6). Inflection points are $(2, 16e^{-2})$ and $(6, 1296e^{-6})$.

- **48.** (a) S is increasing on $(0, 4\pi)$ and never decrease.
 - (b) No local minimum or local maximum.
 - (c) S is concave upward on $(o, \pi) \cup (2\pi, 3\pi)$

and concave downward on $(\pi, 2\pi) \cup (3\pi, 4\pi)$.

Inflection points are (π, π) , $(2\pi, 2\pi)$, and $(3\pi, 3\pi)$.

(d)

Section 4.4

40. 2

Section 4.9

12. $\frac{3}{5}x^{5/3} + \frac{2}{5}x^{5/2} + C$ **16.** $R(\theta) = \sec \theta - 2e^{\theta} + C$ **18.** $G(v) = 2\sin v - 3\arcsin v + C$ **20.** $x - 2\cos x + 6\sqrt{x} + C$

Chapter 4 Review

6: Critical numbers are x = 0, 2. Local minimum value is f(0) = 0 and local maximum value is f(2) = ⁴/_{e²}. Absolute minimum value is f(0) = 0 and absolute maximum value is f(-1) = e.
8. ⁴/₃ 10. ∞